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ABSTRACT

The equation for axi-symmetri magnetohydrostatic equilibria

in stationary conductive fluid is re-examined. Spheroidal magnetic

conducting vortices are shown as examples of equilibrium configurations.

Then a circulating sphere of viscous conducting fluid moving slowly along

an aligned spatially uniform magnetic field, varying linearly with time,

is shown to be a megnetohydrodynamic vortex which satisfies all reason-

able boundary conditions for real fluids. The possibility of experimental

verification is discussed.
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ON MAGNETOHYDRODYNAMIC VORTICES

I. INTRODUCTION

Magnetohydrodynamics (MHD) deals with the dynamic behavior

of electrically conducting fluids under the influence of electric and/or

magnetic fields. Just as in fluid dynamics alone, few of the infinite

number of possible MHD configurations lend themselves to ready analysis.

This report, continuing a line of investigation of viscous incompressible

conducting fluids (Refs. 1, 2 and 3)*, deals with magnetohydrodynamic

vortices.

It will be assumed that the fluid motions postulated are steady and

that the configurations are axi-symmetric. The main advantage of the axi-

symmetry is to make the governing equations more tractable without

sacrificing physical reality. Axi-symmetrical configurations also permit

easier design of laboratory apparatus to test the theory. It remains to be

seen if the corresponding flow patterns of real conductive fluids are steady,

because experimental investigations of plasmas** have shown a wide variety

of instability modes (Ref. 4).

Some previous workers have investigated magnetohydrostatic equilibria,

that is, possible closed magnetic configurations of stationary conducting fluids

(Ref. 5). Their results are extended here with an infinite class of spheroidal

magnetic vortices. A truly magnetohydrodynamic vortex, a spherical con-

ducting, circulating vortex in dynamic equilibrium is also demonstrated.

Qualitative similarities to MHD vortices actually observed, such as 'ball

lightning" and "plasma vortex rings", will be discussed.
* References are on pages 38 to 40.

** Plasmas are gases containing ionized (or charged) particles as well as

neutral particles as in ordinary fluids, but in some features of their be-

havior they can be considered as incompressible homogeneous fluids.
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1I. ANALOGY OF MAGNETIC VORTICES TO FLUID VORTICES

The governing equations for the MHD problem are the combination

of Maxwell's electromagnetic homogeneous field equations and the fluid

dynamic equations with the interaction terms included. These equations

are found in a number of current textbooks on the subject (Refs. 5, 6, 7),

are given in the previous reports (Refs. 1, 2) and will not be repeated

here. It is assumed that there are no free charges* so there are no

electrostatic forces. The notation is fairly standard (see the table of

symbols, page iv).

For a magnetic vortex of stationary conductive fluid the force

equilibrium requires (Ref. 8)

.,= (la)

where p is the scalar pressure, including the "magnetic pressure"

B% / " (e. m. u.) are the volume currents and m. (e. .u.) the

magnetic field vectors. For hydrostatic equilibrium the surfaces of

constant pressure hold both the magnetic field lines and the current

vectors. Such surfaces are sometimes called "magnetic surfaces"

(Ref. 5). Since

e VXB (2)

the equation above for magnetohydrostatic equilibrium is formally the

same as the momentum equation for steady non-magnetic flow of a perfect

fluid,

'Vx ((3a)

with the substitution of B for the velocity vector , X ="

the vorticity vector for VXB = T X and p for 'P" Taking the curl

* For plasmas this amounts to no charge separation effects between the

ion species. A mass of the plasma is electrically neutral.

-2 -
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of Eqs. (la) and (3a) reduces them to

Tx~x 0. (1b)

(3b)

If the vector fields E5 or are simply axi-symmetric without

azimuthal components, the vector equations reduce to scalar equations.

A number of equivalent scalar functions can be defined for axi-

symmetric configurations. As in a previous report (Ref. 2), it is con-

venient to use a flow streamfunction 1 and a magnetic flux function

The streamfunction _4j is introduced in terms of the normalized velocity

components (ur, / , 0 ) for a spherical polar coordinate system (r , ,

r ri, & a r 7

Likewise, a magnetic flux function is introduced in terms of the

normalized magnetic vector components:

h p r, (5)

The normalizing factor is hi0, a characteristic magnetic field intensity,

and

B = 1aA / 4 **(h A ~) 6Ar IfJ* no(6)

The curl of the steady MHD momentum equation is (Ref. 2, Eq. (20))
+ ---2 (- -

r to", r49 r a

= _ D 7" /r1A4,G) (7a)
3(r, 19

-3.-
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which can be rewritten

zt. 9)(7b)

Here, the non-dimensional parameters are

M ,uL/ Hartmann number

Re - L -1 , Reynolds number

Rm= ,A UoL., Magnetic Reynolds number,

and = " . /& ) (7c)

For no magnetic field, M = 0, and perfect (inviscid) fluid implies

Re- a . The vorticity equation, Eq. (7b), becomes

fr'449 _ . (8)

For stationary fluid, iV= 0, and Eq. (7b) reduces to

r A 17 0. (9)

d(r,D)

These are the scalar equivalents to Eqs. (3b) and (lb) respectively.

The correspondence of perfect fluid streamfunction 34 to the magneto-

hydrostatic flux function 3 is pointed out as part of the analogy between

steady perfect fluid flow and magnetohydrostatics. Just as "5b= constant

can be taken as a streamsurface or flow current flux boundary, =

constant is a "magnetic surface" or a magnetic flux boundary (see Fig. 1).

In general, the Jacobian, Eq. (8) or (9), leads to a non-linear

equation in ib (or ), but for the particular case

, . C, a constant, (10)

-4 -
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Flow Streamlines
''=constant

Magnetic
Lines h ____ (A)___ -W x tl

P=const ant \

Meridian Plane
y

Axis of
Symmetry

Fig. 1 COORDINATES AND AXI-SYMMETRIC VELOCITY AND MAGNETIC
VECTOR FIELDS
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the Jacobian is automatically zero. Then .the vorticity magnitude I2 I,
"g r (i'" 4) - (a,.) ,is proportional to (r sin9) the distance

from the axis. Such a vorticity distribution has been considered before

in both oblate and prolate spheroidal coordinates (Ref. 9). Therefore,

by analogy, magnetic spheroidal vortices of conducting fluid with magnetic

surfaces 0 at ?,=z, or, = 0  are given by

Oblate: A I ( "' 4 (1i1a)

Prolate: CL La'. ea ~, -7~~hf.~FJ (1.1b)

In the limit of fineness ratio one, or a spherical vortex of unit radius

- C (Ar'-Pr ) (12)

which is the Hill vortex solution for a perfect fluid (Ref. 10).

Assume that outside the vortex boundary the fluid is non-conductive.

Then J = 0 or )3-- 0. By analogy with irrotational flow (Ref. 11),

solutions with uniform magnetic field at infinity and 7= 0 on spheroidal

boundaries can be written

Oblate: - (13a)

Prolate: i = ___ L_ A (1 3b)
--- , .-- - -7

Here Dn (z) is a Gegenbauer function of the second kind of order n and

index ' In the limit of a spherical boundary r = 1
&. _9 . . -  / 1 . ( 1 4 )

Besides the requirement that the boundary surface be a magnetic

surface, there is the further requirement with finite electrical conductivities

that the tangential components of the magnetic field be continuous (Ref. 12).

(Physically impossible infinite electrical conductivity is often assumed in MHD.)

-6-
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That is, 0.[#/4 hFA b

which reduces to

;. gx(15)

with n the normal to the boundary. Only in the case of the sphere can

this requirement be met directly with the given magnetic flux functions.
3 --- and the normalized magnetic components for theThus, C3 = 110L ",

spherical vortex, Fig. 2a, are

Inside ( n)Outside ( e)in ex

2 A4

91(1-2 = re 2. - L9( *2- (16)

This result checks that of Ref. 13 where Pex = P in The internal

magnetic field of the conducting sphere contrasts with the uniform internal

magnetic field induced in a non-conducting sphere located in an infinite uni-

form magnetic fields; see Ref. 11 and Fig. 2b.

If we admit a discontinuity in the tangential components, as is often

done in magnetic field problems (Ref. 12), the spheroidal magnetic vortices

are acceptable magnetohydrostatic equilibrium configurations, but with

surface currents. These vortices require additional surface current distri-

butions on the spheroidal boundary* as well as the volume currents within:

• The Russian author Shafranov (Ref. 13), after demonstrating the spherical

magnetic vortex, claimed one could easily obtain the analogous spheroidal

configuration. Since he allowed surface currents in other configurations

in the paper, the spheroidal vortices here are probably what he had in

mind. So far as it is known, they have never been published.

-7 -
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Oblate: :! t ) ]

where C, is the coefficient in Eq. (11a) and

c 7" C, A ,. (1 7a)

Prolate: J.4 = 1C Z4 A # 5,

where C is given by

C = -A f/ (, / M4- (1 7b)1 2 A, ; 4"A-fo (?,(-

The jump in tangential components at the spheroid surface, usually

represented as a surface density K due to surface currents, is illustrated

in Fig. 3 for several values of

If we do not admit the presence of surface currents, the exact

ellipsoidal boundary shape is not an equilibrium configuration. However,

it seems possible to modify the boundary to meet the tangential condition.

It will be assumed that the boundary is only a small deviation from an

exact spheroid so we can set the boundary conditions on the spheroid

surface rather than the deformed surface.

The gradients of 3F do not match on the spheroid because of the

angle dependent term within the bracket of Eq. (11a) and Eq. (11b). We

can add arbitrary amounts of irrotational with the same angular

dependence to both 7.e and ?. These deformation flux functionsex in

will be designated by primes so

Oblate:

'o (18a)

a C. -'4 c

-9-
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a.~7 1.o =,97 2 I I

0.0

2 C,

)1%'7e % =,~25 ~=255

b

Cf I00 200 300 400 500 600 700 80e 900

Fig. 3 JUMP IN TANGENTIAL MAGNETIC VECTOR COMPONENT
FOR SEVERAL SPHEROIDS
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Prolate:, CI , -c

.'=a. : ) / . (,)- L( ) (18b)

These solutions have been selected from Table I in Ref. 3 (or Table I

in Ref. 11 with k = - 1). The respective internal and external functions

remain finite at the origin and go to zero at infinity.

The steps in the evaluation of the constants for the deformed

boundary will only be carried through in detail for the oblate spheroid, but it

is obvious that a similar process can be carried out for the prolate one as

well. Writing out the Gegenbauer polynomials for (cos /5 ) and grouping

Oblate:

-~ (19)'"A

Set A and a so that the function in the bracket reduces to a function of

(cos ) )at =,.

3 1 ? D . - (;,a~ .g , ) (20)

Now at 7 "- require continuity of total and Eq. (15),
f

Substituting into these expressions, the following three equations for the

three constants B, b and C1 are obtained.

3(s" 4?.*) = , , ' (22)

- 11 -
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(2 3)

These algebraic equations involve rather complicated expressions in

Schematically, the equations above can be written

-f +0 (22a)

~(7.) C, +-1 . 7 ) + y = Y (2 3a)

A( .)Cl --A ( . ) B 4-3D 9 h 0 (24a)

These equations for the unknowns, CV, B and b, always possess a"
solution (unless the determinant of the 3,function matrix is singular,
which can only be true. for isolated values of at most). Denoting the

determinant of the coefficients, A or

the constants can be written symbolically

/ A&) 4') (26)

-12-
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A

6o f(28)

So,although the approximately spheroidal solution exists, the de-

formation of the boundary for a given Y7o requires a bit of numerical

calculation. The resulting flux functions will not have I= 0 on the

spheroid surface y = o but will have _-= 0 and continuous magnetic

components on a deformed surface. These approximately spheroidal surfaces

enclose a current bearing region of fluid where the volume currents are

proportional to the distance from the axis and there are no surface currents.

As 1. can take on any value, the flux functions represent an infinite class

of oblate (almost) spheroidal vortex magnetohydrostatic equilibria. Like-

wise, there is also the class of prolate approximately spheroidal magnetic

vortices in static equilibrium.

Thus Eq. (10) gives rise to an infinite set of axi-symmetric magneto-

hydrostatic vortices in a spatially uniform magnetic field. However, in

order to generate the toroidal currents that characterize these vortices, it

is necessary for the intensity of the magnetic field to change with time.

From Ohm's law J = O7 E, the electric field is also toroidal, E E L,.

Without the use of actual voltage sources this electric field can only be

generated by a changing magnetic field where VxE - -/ ' -# _ x
J and E vary linearly with distance from the axis which means dH (t)

dt
is constant or H varies linearly with time.

The magnetohydrostatic vortices are not the only solutions to

Eq. (9). In fact, if ID!]/r.mlG is any function of 3,a new set of solutions

can be generated. Of course, if the function is with n o 1, the

equation will be non-linear and difficult to solve. The next section deals

-13-
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with the totality of axi-symmetric magnetohydrostatic equilibria that

yield linear equations, including cases with azimuthal magnetic field

components.

-14 -
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III. MAGNETOHYDROSTATIC EQUILIBRIA

Essentially the same results may be obtained through the use of

any axi-symmetric coordinate system. To take advantage of some

previous analysis (Ref. 5), the cylindrical polar coordinate system

(x , u, r ) will be used in this section. The flux function is

related to the magnetic components,

01 S 2X (29)

Let (30)

where f is an arbitrary function of

Thompson (Ref. 5) reduces the (x ,-t" ) component parts of Eq. (la)

to

2 I 9%V(31)

9 + 9 F / C = (32)

where df and 2 - - L --

Differentiate Eq. (31) with respect to x, Eq. (32) with respect to

zr and subtract to eliminate p.

* 'f4 - - Z; =
(33)

or .

10('-, z)

This Jacobian will be satisfied if

-15-
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= -= (34)

where P'(0 is any function of and p is pressure (Refs. 5, 13).

Thus if " and/or p'(z') equals either a constant (including zero)

or is proportional to "! , Eq. (34) is a linear partial differential equation.

All of these classes are summarized in Table I -- . k = i-i.

Table I. Table of Linear P. D. E. for

___ A! .s' +=9 = ___
.f 0 B

0 0
1X=0 J=BW (8c !Z?) 0

6_ 7b_ 2' - p w,- 0+ -;-

Denote the corresponding solutions . There are four homo-

geneous equations for /3,, P3,, , a 33 with linear operators
,2 .Z c' r =ca d Z.., = zzC c

All the remaining equations contain a forcing function as well. In the

cylindrical coordinates the operators Z) and .7_ C have been

considered long ago for other problems. General separable solutions

are known and the functions tabulated. The other homogeneous equations

can also be separated and reduced to an unusual second-order ordinary

differential equation in - . (See Appendix.) Although the equations here

are linear, the full Eq. (9) is not and there can be no superposition of

solutions.

16 -
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Now all these solutions represent a current distribution

that satisfies the curl-free condition of (J x B). Such a distribution is

not altered if we describe it in another coordinate system. The set of

equations in Table I can be transformed to any axi-symmetric coordinate

system ( o,/e , o ) where the line element is

(5),= -4,Z~4 ~ d'16 4jd 4- ad' 2.

Then -X = distance from the axis = '( oe , 14 );

= 'r .0, .2 4 ' P
Yb [ fl , the Stokesian operator (Ref. 15);

27* zird , total axial magnetic flux through circle of IZ"

radius (Ref. 13)

z = zw J ) z 'total axial volume current through same
0f J" area (Ref. 13).

The solutions in spheroidal coordinates given in the previous section

are seen to be examples of and . The equation

e(35)

has been considered in spheroidal coordinates also and separable solutions

15F, have been demonstrated (Ref. 16). Unfortunately, these solutions

have not been tabulated but are related to the general spheroidal wave func-

tions (Ref. 17). The equations for 3P.J and ,sdo not seem to be separable.

The question of separability of a solution 31". in a general axi-

symmetric coordinate system is probably an extension of separability theory

for potential functions and their close relatives, solutions of the Helmholtz

equation. Requirements for the separability of these equations have been

given (Ref. 18) and the same requirements seem to hold for the generalized

axi-symmetric potential (GASP) functions (Ref. 11). Little attention seem's

to have been directed to nonhomogeneous equations with the same operators.

See the Appendix for further discussion.

- 1,7-
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IV. MAGNETOHYDRODYNAMIC SPHERICAL VORTEX

The previous sections dealt only with stationary fluid. A given

magnetohydrostatic equilibrium configuration is disturbed if the fluid

moves. If the fluid motion is very slow, we might imagine the disturbance

was slight and that a new equilibrium was set up not very far from the

hydrostatic one. For an arbitrary fluid motion, even for a perturbation

analysis, one would have to calculate the flow disturbance to the magnetic

field, which includes a boundary change. The next step is to solve the non-

linear flow momentum equation (including the magnetic effect) which would

probably introduce a further flow perturbation. With luck, the process

would converge quickly but is likely to be difficult in detail.

By very great fortune, there is an exact flow solution of the full

Navier-Stokes equation that introduces no disturbance to the magnetic

vortex. This is the Hill-Hadamard spherical viscous vortex. The stream-

function,

= A?1 (36)

has exactly the same form as the flux function , Eq. (12), for the

spherical magnetic vortex. So the magnetic disturbance equation is (Ref. 2)

(37)

using the star for the disturbance field. Thus the magnetic interaction

term in the MHD vorticity equation is still exactly the same as for no

motion. The full steady MHD vorticity equation, Eq. (7a) or (7b), is

identically zero. Going back to the momentum equation, the scalar pres-

sure will be increased by { " over the magnetohydrostatic value

in the force balance.

Outside the spherical boundary we have no exact solution of the flow

- 18 -
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equation, but for small Re the terms are approximately in balance with the

Hadamard-Rybzynski Stokes flow solution for the circulating sphere in

uniform flow. Outside the sphere the conductivity is zero so there is no

disturbance to the magnetic field there. The momentum balance is no

different from the non-magnetic viscous case except for the magnetic

pressure term. To the extent that the outer flow solution represents

a possible steady flow there, the combination of - and 7 gives a

steady MHD vortex in dynamic equilibrium, Fig. 4. In fact, even if the

outer flow were modified somewhat, by the presence of an outer boundary,

say, but the change in outer flow pattern did not induce a change of stream-

lines within the vortex, the MHD configuration would still be in dynamic

balance.

All the viscous boundary conditions are exactly satisfied at the

spherical surface between the fluids. The normal velocity is identically

zero, the tangential velocities in and out are continuous. The tangential

and normal stress are also continuous across the boundary (Ref. 19). It is a

curious fact that the pres or absence of an interface between the fluids

does not affect the streamline pattern. An interface with given surface

tension value merely contributes an additional term to the internal static

pressure.

Steady spheroidal viscous vortices axe also exact solutions of the

full dynamic equations (Ref. 9). The linear Stokes flow equation in spheroidal

coordinates can also be solved for the external flow (Ref. 20). Yet,

unfortunately, the viscous boundary conditions cannot all be met simultane-

ously at the spheroidal surface (Ref. 21). Experimentally, steady approxi-

mately spheroidal viscous vortices are often observed when there is an

interface between the fluids (Refs. 14, 22). The streamline flow within the

vortex agrees qualitatively with the exact steady flow solution (Ref. 14).

Even in the absence of an interface, if the translational velocity is sufficiently

slow, some quasi-steady spheroidal vortices also display approximately

- 19 -
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the same flow pattern. As with the spherical vortex, it is possible that

the spheroidal viscous flow patterns are duplicated in the magnetic vortex

pattern. Because steady viscous vortices seem to exist only under the

stabilizing influence of an interface, it might be inferred that steady MHD

vortices could exist under similar conditions. However, questions of

stability are far beyond this report, and, while it seems plausible, the

existence of such vortices cannot be demonstrated here. The presence

of a magnetic field often changeg stability 6nhditions markedly, sometimes

tending to stabilize the conductive fluid motion and sometimes the reverse

(Ref. 23).

It might be remarked that often viscosity is neglected, particularly

for high Re - co . Dropping the i/Re term in the vorticity equation and

dropping the viscous boundary conditions would allow an inviscid spheroidal

MHD vortex in a uniform flow field with velocity vectors proportional to

the magnetic vectors of the magnetohydrostatic vortices. There would be

a vorticity jump at the boundary in this case, and however slight the vis-

cosity, this is physically impossible.

The steady MHD spherical conducting vortex seems to refute Cowling's

theorem, as it is usually stated, to the effect that a steady simply axi-sym-

metric motion of conductive fluid is impossible. Actually, Cowling's theorem

applies to the case where the steady magnetic field reduces to zero at in-

finity (Ref. 24). In the present case, the boundary condition on the magnetic

field is a spatially uniform field at infinity. It was shown that the magnetic

vortex requires a certain time-dependent H° = H (t) . If it is possible to

get a magnetohydrostatic vortex, it should be possible to get a MHD vortex

with steady fluid motion.
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It might be mentioned that the hydromagnetic equations, which imply

inviscid fluid with infinite electrical conductivity, have been used by
Agostinelli (Ref. 25) to derive a spherical vortex that moves along the

applied magnetic field. However, the conditions of infinite conductivity

and no viscosity are unrealistic when applied to real fluids. The use here

of realistic viscosities and conductivity requires more stringent boundary

conditions, but they can be met with the spherical viscous MHD vortex of

fluid with arbitrary electrical conductivity.
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V. PHYSICAL EXISTENCE OF MHD VORTICES

Useful theory in physical science depends upon the existence of

a state of nature that corresponds to the theoretical hypotheses.

Usually this state occurs rarely in our everyday experience but can

often be set up under controlled conditions in the laboratory. There

the reward of a theory self-consistent in hypotheses and approximations

is the observation of behavior in accord with the theory. Until such a

test is made, we can only conjecture on the possibility and its outcome.

The conjectures here on a real spherical viscous MHD vortex are based

on non-magnetic viscous flow theory on one hand and on observed magneto-

hydrodynamic behavior on the other.

The non-magnetic viscous flow theory for a rigid sphere in slow

uniform motion has been tested in the laboratory. The observed steady

motion in the Stokes flow range, Re < 0. 1, conforms with the theory if

the size of the fluid container is many times larger than the sphere. The

effect of the container wall can be approximated theoretically too for the

slow viscous flow range and the successful experimental check indicates

the internal consistency of the viscous equations and the non-slip boundary

conditions. See Fig. 5 of Ref. 26 for the conclusive evidence.

Similarly, if a moving fluid drop or bubble is a circulating sphere,

the steady external flow and the viscous drag conform to theory within

the same Re range (Ref. 26, Fig. 10). The fluid sphere in uniform motion

may fail to have complete circulation due to some inhibitory effect of the

interface, but quite often the spherical fluid vortex is observed. Even

though the total drag coefficient is less for the fluid circulating sphere

than for the rigid one at the same Reynolds number, up to one-third of

the viscous dissipation occurs inside the sphere (it depends on the vis-

cosity ratio of the fluids).
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Consider some corresponding hydromagnetic cases. A solid

non-ferrous metal (rigid, conducting) sphere moving steadily in a

uniform aligned magnetic field within a non-conductive viscous fluid

of the same permeability would have no MHD interaction. * The in-

duced field inside the sphere will be uniform. No q x h currents

would be induced either internally or externally by virtue of no motion

across the field lines inside and no conductivity outside. The flow field

would be identical to the non-magnetic flow field. It does not matter

whether or not the magnetic field intensity is constant; there is no MHD

interaction in the fluid. If the magnetic field intensity is time-dependent,

there will be non-steady currents set up within the metal conducting

sphere.

The flow field outside a fluid circulating sphere of conducting

fluid (say, a mercury drop) moving uniformly along a uniform magnetic

field will likewise have no external MHD interaction if the conductivity of

the external fluid is zero. However, the fluid circulating sphere will

have an internal MHD interaction. In general, there will be induced cur-

rents within the sphere whether the field intensity is constant or time-

varying. This holds whatever the equilibrium configuration of streamlines

and flux lines inside the sphere. The MHD configuration will probably be

either a maximum or a minimum dissipation of energy. Consider the

case of Section IV, where the streamlines and field lines within the sphere

do coincide. Just as the Hill-Hadamard non-magnetic flow vortex solution

represents the maximum viscous dissipation within the sphere with vor-

ticity varying linearly with distance from the axis, the maximum ohmic

dissipation to heat is given by the current distribution of the same form.

Thus it seems likely that there is a steady MHD viscous vortex configuration

with this maximum dissipation to heat. An experiment to test the theory

is completely feasible.

* There will be a static magnetic field disturbance if the permeabilities

of the sphere and the fluid differ; see Ref. 3, Section III, and Fig. 2b.
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The theory as derived in Section IV applies to an infinite fluid

domain with a magnetic field of uniform intensity throughout. Obviously

these conditions cannot be attained in a finite laboratory experiment.

Such discrepancies of actuality and theory occur all the time and it is

usually sufficient to consider a very large region where the desired con-

ditions are satisfied. A large straight solenoid with accessory regulating

equipment, cooling devices and so forth would provide the required

magnetic field to a reasonable degree of accuracy. The limit to the flow

field will change the outer flow lines slightly (the correction can be cal-

culated) but will not change the non-magnetic flow lines within a circulating

sphere. Thinking of the circulating sphere as a mercury drop, it is ob-

vious that the flow lines within the opaque sphere in the MHD case will

not be observable. However, a change in the flow pattern will be indirect-

ly observable as a change in viscous drag. The magnetic field pattern

associated with the moving drop can be inferred from small stationary

magnetic pickup coils placed within the flow field, as they respond to

the changing magnetic field. Even with poor sensitivity it should be

possible to differentiate between the magnetic field patterns of Fig. 2a

and Fig. 2b. Inevitably the magnetic probes will cause a disturbance to

the MHD field but the extent of the disturbance should be revealed by

changes of shape and velocity of the drop with the probes in place com-

pared to the drop behavior in their absence.

The MHD spherical vortex analysis applies only to a low Reynolds

number flow. However, if, as in the spherical vortex example, the

flow lines within a magnetic surface tend to align themselves with the

magnetic flux lines, the magnetohydrostatic flux configurations may

also be nearly the MHD flux configurations provided the flow situation is

relatively steady. In some plasma experiments a toroidal arrangement

of magnetic fields is used to confine the hot plasma in the central portion

of a toroidal tube. These fields usually possess both axial and azimuthal

- 25 -



THE JOHNS HOPKINS UNIVERSITY

APPLIED PHYSICS LABORATORY
SILVER SPRING MARYLAND

components. Although the MHD configurations are not steady, the

observed fields seem to progress through a series of axi-symmetric

configurations approximately in accord with a set of magnetohydrostatic

equilibria calculated by means of Pz3 (see R-f. 5).

Recently, an axi-symmetric configuration yielded some fairly

long-lived "plasma vortex rings" (Ref 27). The plasmoids were

actually roughly spheroidal in shape and had internal vortex motion

without azimuthal components. They were followed by a second struc-

ture that appeared to have azimuthal motion. The measurements of

magnetic field on the center line of the plasmoid are not inconsistent

with the magnetic spheroidal vortex, Fig. 5. However, the rings were

moving with considerable relative velocity, 5 x 106 cm/secand had in-

ternal circulation, so it is probably correct to infer, as the author of

the article did, that the streamlines and field lines were identical with-

in the vortex. This is not quite the same as the statement, "possesses

the same magnetic field and velocity distributions", which seems in-

consistent with translational motion in the same direction for all the

rings while the magnetic field reversed from one vortex ring to the next,

Fig. 5b. Note that the driving magnetic field was time-dependent, Fig. 5b.

Perhaps it will soon be possible to describe the structure within the plas-

moids in more detail to see if there is a magnetic torus of small cross-

section (true vortex ring) or a spheroidal vortex.

Finally, there sometimes appears, as a result of lightning dis-

charge, a glowing ball often described as undergoing rapid internal

rotation as well as traveling parallel to the earth's surface, though

some distance above it (Refs. 28 and 29). This "ball lightning" appears

hot and brilliant, lasts on the average 3 or 4 seconds, but may last many

minutes, often disappearing with a loud explosion (implosion). Some

people have attributed this phenomenon to a free-floating plasma mass

in an external r. f. electric field. Such plasmas have been produced in

the laboratory, but the high frequency field does not penetrate the plasma
- 26 -
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Fig. 5a THEORETICAL VALUE OF AXIAL VECTOR COMPONENT IN
SPHEROIDAL MAGNETIC VORTEX

-
L
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Fig. 5b MEASURED VALUE OF AXIAL MAGNETIC VECTOR COMPONENT IN
"PLASMA VORTEX-RINGS" (Reference 27)
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and it differs from the ball lightning in various respects. There is a

strong possibility that the natural phenomenon is a true magnetic vortex

with internal currents. The observation of "donut" forms as well as

balls suggests it is closely allied to the laboratory produced plasmoids

described above.

Thus there is evidence that real MHD vortices can exist in nature

under certain conditions. It seems highly probable that a steady viscous

MHD vortex can exist in uniform translational motion through an aligned

magnetic field at low Re. The theoretical model of the steady spherical

MHD vortex which satisfies all reasonable boundary conditions for real

fluids may be expected to describe the MHD field.
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VI. SU MMARY

Vorticity is an important property of ordinary viscous fluids,

especially in the vicinity of moving objects. It seemed natural to assume

that vorticity would also be important for the magnetohydrodynamic (MHD)

flow of incompressible conductive fluid in the presence of magnetic fields.

As in previous work on MHD fields (Refs. 1, 2, 3, 11), the assumption of

a simple axi-symmetric configuration allows some mathematical simplifica-

tion without sacrificing any physical reality: The complete MHD field of

simple axi-symmetry can be reduced to the solution of two scalar equations

in terms of the Stokes streamfunction and an analogous magnetic flux function

(Ref. 2). These partial differential equations are non-linear and intimately

coupled so no general solution can be obtained to fit all MHD problems.

However, they are in a form that allows complete solution for certain

problems. In this report these equations were utilized to study some MHD

vortices, dealing with a finite body of conductive fluid in a magnetic field.

There are conditions under which only the magnetic field has rotationality,

corresponding to free volume-current flow, while the flow field is stationary.

Some magnetohydrostatic configurations have been studied before through a

formal mathematical analogy with the steady rotational flow of a perfect

fluid. The equations of magnetohydrostatic equilibria were re-examined

here and some solutions given extending the previous results. Specifically,

an infinite class of magnetic vortices in a uniform magnetic field was

demonstrated where the boundary shape is spheroidal, prolate or oblate

of any fineness ratio.

A truly magnetohydrodynamic vortex solution for a moving flow

field is usually intractable because of the non-linear interaction between

the magnetic field and the flow field. It was shown that there is an ex-

ceptional case, the spherical Hill-Hadamard viscous conducting vortex in

a uniform but time-varying magnetic field. This MHD flow solution permits
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all realistic boundary conditions for the viscous fluid and the magnetic

field components to be satisfied simultaneously. The possibility of an

experimental verification of the theory was discussed, along with the

relation of the theory to observed phenomena such as "ball lightning"

and "plasma vortex rings".
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APPENDIX

Consideration of Magnetohydrostatic Equations

The set of equations, Table I,

fF. - (A-1)-V
all represent possible magnetohydrostatic equilibria. As in other

problems with particular geometric boundaries, it is often advantageous

to have coordinate systems with the same geometry. Therefore, this

section will discuss solutions in various axi-symmetric co-

ordinate systems.

In cylindrical polar coordinates (x ,', O)

Px 0,- - (A-2)

This equation is a generalized axially symmetric potential equation.

It is closely related to the ordinary axi-symmetric potential equation

__ (A-3)

which has been studied in various axi-symmetric coordinate systems

(Ref. 18). The conditions for separability of Eq. (A-3) have been given

(Ref. 18), and the conditions for the generalized equations seem to be

exactly the same (Ref. 11). In fact, for Eq. (A-2) the solution can be

formulated in terms of the potential The separated general

solutions for Eq. (A-2) have been given in spherical polar, oblate

spheroidal, prolate spheroidal, toroidal, dipolar and peri-polar co-

ordinates (Refs. 3, 11). A number of more esoteric coordinates, such

as cap cyclides (Ref. 30), have also been used to discuss the potential

equation and, no doubt, the solution for the Stokesian operator would

follow from a similar treatment.
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The equation for ?1/Z

is a nonhomogeneous equation with the same Stokesian operator.

Therefore, a particular solution is required to add to the complementary

solution above. In cylindrical polar coordinates, it is easily shown that

(A-5)

is such a solution. In spherical polar coordinates, this becomes

) (A-6)

which can be checked as a solution fairly easily using 2) written in

these coordinates, Section I. Similarly, the solution in any axi-symmetric

coordinate system ( ., /4 , i ) can be written as

L/2 -
)  =  (A-7)

713The equation for 3-m
, . = (- " C.) 0. " (A-8)

contains the operator ( 9-C.2  ) which is rather A milar to the
Helmholtz operator ( V'1 +-c 2 ) which has previously been considered

in a number of axi-symmetric coordinate systems (Ref. 18). Separability

of the Helmholtz equation,

(v2 €- c ") = O (A-9)

requires one more condition, in general, than separability of the Laplacian.

However, for all those rotational coordinate systems where the map in a

meridian plane is a conformal mapping from the x, y map in that plane, the

extra condition is always satisfied (Ref. 18). The common axi-symmetric

cooordinate systems do allow separation of the Helmholtz equation (A-9)
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and separation of Eq. (A-8) as well. Separated solutions in

cylindrical and spherical polar coordinates, oblate and prolate spheroidal

coordinates have been given in the literature. These two-dimensional

solutions all seem to correspond to types of three-dimensional wave functions.

The nonhomogeneous equation for

x", 15P = 302-= 2 1,(A-10)

requires only a particular solution to add to the complementary solution

In the cylindrical polar coordinate solution it is easy to see that

such a solution is
B

This can be transformed to other coordinate systems and gives the some-

what surprising result that a simple separated particular solution exists

in the spheroidal coordinate systems even though the differential equation

itself is not simply separable. In the spherical polar system another

particular solution is found to be

(rr) = P" 00- (A-12)

Of course, either of these particular solutions, transformed to the ap-

propriate coordinates, can be used with the general solution -i to

satisfy boundary conditions.

7F2The nonhomogeneous equation for is
--- 7_ = Z7) -T=- -L!- , 8 vr' A-13)

-7 2 (

The particular solution is just the sum of a particular solution above and

ls;I 2 That is,
B 4 b'

t)zr '~) = -iV ,--- " " , (A-14)

while in other coordinate systems z(6,/5) is substituted.

The equation for 71,, is also nonhomogeneous
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(A-15)

but with the "generalized Helmholtz" operator. This presents a

slightly different particular solution but also an easy one.
L

f-,,3 (A-16)

with similar simple transformed solutions in other coordinate systems.
The operator of the equation for I ,

C (A-17)

that is, 7 -t C n L seems to require a new type of solution that

doesn't fit in with GASP (generalized axially symmetric potentials) and

wave functions. The equation can be separated easily in the cylindrical

polar coordinate system.
LetLet= F(/-) 0(tx).

(A-18)

Equation (A-17) becomes
( )[ %L- ",. - ~ ' ""F(m-7 0

6cx) Fw

where oc = - . Using separation constant /, 2= -

G +F " OF /- r / F ( -+kL)

Changing the independent variable to z

Z= --

the equation for F becomes,

da % y
which is a convenient form to develop the recurrence relations between
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coefficients of an infinite series representation of F. Let - .7 a,

then co- z

or 
J("+N +

L. 0jY112.v -t 3 -a ]i..
W=0

Thus

~&c~2d,=2 d(cj*v)(&#kA) Tbt'k)e + c(k)e (-9
hi 0 (A-19)

Of course, a similar solution in descending powers of iv can be developed

for regions far from the origin.

When-k = 0, the solution is independent of X and a closed expression

F (z-) is obtained:

F, 6m,) (A-20)

The equation (A-17) does not appear to be separable in any other

rotational coordinate system, even the spherical polar one:

2.

(A-21)

where A=

The nonhomogeneous equation for ,

7.

31 ;=~ - ~(~c (A-22)

requires a particular solution. Assuming the particular solution to be a

function of ' alone, and an ascending series
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Eq. (A-22) can be reduced to

0

leading to the relations between coefficients:

=A -

2.

When o,( 0 this reduces to the particular solution given above.

The solution can be transformed to other coordinate systems.

3The final equation,

can be separated in the cylindrical polar coordinate system, if no other.

With

- ,/ ( -) = F -) -Q'X) (A-25)

Eq. (A-24) becomes

G (x) +- / ) F{) - 0oFE 'c-FJ-= .

,2!(y) 'F~w)f -; -1 P)& 4

With separation constant KL= ('- -)
_~0 2 (-'- F =F -oF-e

' (x) 0.  _
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x (above)
_ - F = F( c).

These separated equations reduce to essentially the ones above for

Note that the solutions on the central cross rather than the

corners of the matrix . ,. will probably be more significant in

IM n og undary conditions on a magnetic surface that encloses conductive

fluid. Note ai he:-.,, or S may give a solution 'I= 0

on a given surface, but they corr pe-a.d.to different axial current distri-

butions.

For possible steady magnetohydrodynamic solutions, ---- _

probably most sign-ificant physically. if the streamfunction "- and flux

function "L are aligned, there is ro disturbance to the magnetic vortex

field and the vorticity distributions corresponding to these solutions satisfy

not only the non-linear inertial requirement for steady flow but also the

corresponding viscous terms. All individual terms Ibelow are identically

zero when f : 0.

Flow Vorticity Equations:

(r,9) , ,,o

?t t- 9 ;1,(r, 6) -g J -rD

For f # 0, the azimuthal components are not in steady dynamic equilibrium.
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